Question on: JAMB Physics - 2004
Calculate the angle of minimum deviation for a ray which is refracted through an equiangular prism of refractive index 1.4
From the relation refractive index = Sin ( \left(\frac{A+Dm}{2}\right) )
Where A = refractive angle = 600, Sin( \left(\frac{A}{2}\right) )
( \implies 1.4 = \frac{\text{Sin}\left(\frac{60^0 + Dm}{2}\right)}{\text{Sin}\left(\frac{60}{2}\right)} \
= \frac{\text{Sin}\left(\frac{60 + Dm}{2}\right)}{\text{Sin}30^0} \
= \frac{\text{Sin}\left(\frac{60 + Dm}{2}\right)}{0.5}\
\text{Therefore} 1.4 \times 0.5 = \text{Sin}\left(\frac{60 + Dm}{2}\right) \
\text{Therefore} \left(\frac{60 + D_m}{2}\right)= \text{Sin}^{-1} 0.7000 \
= 44^0 12^1 \
60^0 + D_m = 88^0 24^1 \
D_m = 88^0 24^1 - 60^0 \
= 28^0 24 \
29^0 )
Add your answer
Please share this, thanks!
No responses